Manipulation of Self-Assembled Microparticle Chains by Electroosmotic Flow Assisted Electrorotation in an Optoelectronic Device

نویسنده

  • Xiaolu Zhu
چکیده

A method incorporating the optically induced electrorotation (OER) and alternating current electroosmotic (ACEO) effects, for the formation and motion control of microparticle chains, is numerically and experimentally demonstrated. In this method, both the rotating electric field and ACEO fluid roll are generated around the border between light and dark area of the fluidic chamber in an optoelectronic tweezers (OET) device. The experimental results show that the particle chains can self-rotate in their pitch axes under the rotating electric field produced due to the different impedances of the photoconductive layer in light and dark areas, and have a peak self-rotating rate at around 1 MHz. The orbital movement of entire particle chain around the center of ACEO fluid roll can be achieved from 0.5 to 600 kHz. The strength of OER motion and ACEO-caused orbital movement of particle chains can be adjusted by changing the frequency of alternating current (AC) voltage. This non-contact method has the potential for spatially regulating the posture, orientation and position of microparticle chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle ...

متن کامل

Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)

The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...

متن کامل

Characterization of Microparticle Separation Utilizing Electrokinesis within an Electrodeless Dielectrophoresis Chip

This study demonstrated the feasibility of utilizing electrokinesis in an electrodeless dielectrophoresis chip to separate and concentrate microparticles such as biosamples. Numerical simulations and experimental observations were facilitated to investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and electrothermosis. Moreover, the proposed operating mode can ...

متن کامل

Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.

This paper reports a lens-integrated liquid crystal display (LCD)-based optoelectronic tweezers (OET) system for interactive manipulation of polystyrene microspheres and blood cells by optically induced dielectrophoretic force. When a dynamic image pattern is projected into a specific area of a photoconductive layer in an OET, virtual electrodes are generated by spatially resolved illumination ...

متن کامل

Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.

We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015